Some important points to be aware of when measuring and monitoring connectivity:

Landscape versus habitat connectivity,
within-patch and between-patch connectivity, and the influence of changes in habitat amount

Dr. Jochen Jaeger
Concordia University, Montréal
Department of Geography, Planning and Environment
Canadian Maritimes Ecological Connectivity Forum, Dalhousie University Halifax (NS), 24-25 April 2019

Why monitor ecological connectivity?

- to document the changes
- pace of landscape change, changes in trends
- \rightarrow e.g., as an indicator of environmental quality
- to assist in the planing of new roads and railways
- to reveal relationships with the presence and abundance of species
- and discover thresholds
- to compare and balance new construction projects and mitigation measures
- and compare scenarios
- to introduce quantitative environmental quality standards
- objectives and limits

Need for indicators for environmental reporting on the state of ecosystems

Outline

- Important points to take into account
- Landscape connectivity or habitat connectivity?
- Within-patch and between-patch connectivity
- Influence of changes in habitat amount
- Example: Effective mesh size
- Applications
- Switzerland
- Europe
- Ontario
- Canadian prairies
- California
- City Biodiversity Index

- Conclusions

Definition of Connectivity

- Landscape connectivity = „the degree to which a landscape facilitates of impedes animal movement" (Taylor et al. 1993)
- Suggestion by Taylor et al. (1993) to measure landscape connectivity "for a given organism using the probability of movement between all points or resource patches in a landscape".

Landscape connectivity or habitat connectivity?

- Landscape connectivity: "probability of movement between all points or resource patches in a landscape"
- Habitat connectivity: "probability of movement between all points or resource patches in a landscape"
- What if some patches are destroyed (habitat loss)? Does connectivity decrease or increase in this case?

Within-patch connectivity or between-patch connectivity or both?

$55 \%(10 \mathrm{ha}+5 \mathrm{ha}) /(12 \mathrm{ha}+10 \mathrm{ha}+5 \mathrm{ha})=15 \mathrm{ha} / 27 \mathrm{ha}=0.55$ or 55%
Simple idea:
$C=\frac{\text { Total area of natural areas that are connected (} \leq 100 \mathrm{~m} \text { apart) })}{\text { Tatal area }}$
Total area of natural areas

Within-patch connectivity or between-patch connectivity or both?

(a)

55 \%
100 \%
Simple idea:
$C=\frac{\text { Total area of natural areas that are connected (} \leq 100 \mathrm{~m} \text { apart) }}{\text { (}}$ Total area of natural areas

Within-patch connectivity or between-patch connectivity or both?

(b)

Simple idea:
$\mathrm{C}=$ Total area of natural areas that are connectea $(\$-100 \mathrm{~m}$ apart)
Total area of natural areas
Within-patch connectivity needs to be included!

New method

- Based on Effective mesh size (J aeger 2000)
- \Rightarrow the probability that two points randomly chosen in a landscape are in the same patch or are considered connected (<100 m between patches, no major bamier)
- Includes ba miers and «intra-patch connectivity»

Original formula of $m_{\text {eff }}$

$$
m_{c t}=\left(\left(\frac{A_{1}}{A_{t}}\right)^{2}+\left(\frac{A_{2}}{A_{t}}\right)^{2}+\left(\frac{A_{2}}{A_{t}}\right)^{2}+\ldots+\left(\frac{A_{e}}{A_{t}}\right)^{2}\right) \cdot A_{1}=\frac{1}{A_{1}} \cdot \sum_{i=1}^{n} A_{i}^{2},
$$

(J aeger 2000)
where n is the number of patches,
A_{i} is the size of the i-th patch with $i=1, \ldots, n$
and $A_{\text {total }}$ is the total a rea of the landsc ape

Formula of $m_{\text {eff }}$ for the $C B$

$$
m_{\mathrm{et}}=\left(\left(\frac{A_{1}}{A_{t}}\right)^{2}+\left(\frac{A_{2}}{A_{t}}\right)^{2}+\left(\frac{A_{2}}{A_{t}}\right)^{2}+\ldots+\left(\frac{A_{6}}{A_{t}}\right)^{2}\right) \cdot A_{1}=\frac{1}{A_{1}} \sum_{t=1}^{n} A_{1}^{2}
$$

(J aeger 2000, Desla uriers et al. 2018)
where n is the number of groups of linked patches ($<100 \mathrm{~m}$), A_{i} is the size of the i-th group of linked patches with $i=1, \ldots, n$ and $A_{\text {total }}$ is their total area
-> This is the connectivity of the natural areas rather than the connectivity of the landscape (given by the original formula)

Example

(a)

IND $2=\frac{1}{A_{\text {total }}}\left(A_{1}^{2}+A_{2}^{2}\right)=\frac{1}{27 \mathrm{ha}^{2}}\left(15 * 15 \mathrm{ha}^{2}+12 * 12 \mathrm{ha}^{2}\right)=\frac{369}{27} \mathrm{ha}=13.67 \mathrm{ha}$
$I N D 2=\frac{1}{27 \mathrm{ha}^{2}}\left(15^{*} 15 \mathrm{ha}^{2}+6^{*} 6 \mathrm{ha}^{2}+6^{*} 6 \mathrm{ha}^{2}\right)=\frac{297}{27} \mathrm{ha}=11 \mathrm{ha}$

Influence of changes in habitat amount?

Example of a metric that does not consider within-patch connectivity: CONNECT

$$
\text { CONNECT }=C_{i}=\left[\frac{\sum_{i>k}^{n_{i}} c_{i j k}}{\frac{n_{i}\left(n_{i}-1\right)}{2}}\right] * 100 \%
$$

Measuring landscape connectivity: On the importance of within-patch

 connectivityAriel G. Spanowicz ${ }^{1}$ and Jochen A.G. Jaeger ${ }^{1,2,}$
Affiliations
${ }^{1}$ Department of Geography, Planning and Environment, Concordia University Montréal, 1455 De Maisonneuve Blvd. West, Suite 1255, Montréal, QC H3G 1M8, Canada, Emails: ariel.spanowicz @ gmail.com, jochen.jaeger @ concordia.ca
${ }^{2}$ Loyola Sustainability Research Centre, Concordia University Montréal, 7141 Sherbrooke St. West, Montréal, QC, H4B 1R6, Canad

Spanowicz \& Jaeger (submitted)
corresponding author, email: jochen.jaeger @ concordia.ca, phone: +1-514-8482424 ext. 5481

Fig. 1. Two theoretical landscapes fragmented by roads. The left landscape has higher connectivity (lower fragmentation) than the right landscape. However, the RV calculated for the less connected landscape (right) is higher than the RV for the other landscape, which is counterintuitive. In contrast, the effective mesh size ($m_{\text {eff }}$) gives results consistent with the notion of connectivity. RV is calculated as the volume beneath the pseudotopographic surface defined by distance to the nearest road following Watts et al.
(6). Size of each landscape is $10 \mathrm{~km} \times 10 \mathrm{~km}$; width of the roads is 10 m .

Outline

- Important points to take into account
- Landscape connectivity or habitat connectivity?
- Within-patch and between-patch connectivity
- Influence of changes in habitat amount
- Example: Effective mesh size
- Applications
- Switzerland
- Europe
- Ontario
- Canadian prairies
- California
- City Biodiversity Index

- Conclusions

How to measure the degree of landscape fragmentation?

- Serious problems with earlier methods
- New method: effective mesh size, $m_{\text {eff }}$
- Probability that two randomly chosen points in the landscape will be in the same patch:

Jaeger (2000), Landscape Ecology

- $m_{\text {eff }}$ is included in the programm FRAGSTATS
(available online)

Effective Mesh Size ($m_{\text {eff }}$)

- Interpretation: possibility that two individuals can encounter each other (e.g., gene flow)
- Multiplication with $A_{\text {total }}$ to convert this probability into an area (= effective mesh size)

$$
m_{\mathrm{eff}}=A_{\mathrm{total}} \cdot p
$$

An example

$A_{\text {total }}=4 \mathrm{~km}^{2}$

Landscape with two roads (three patches)
$A_{1}=2 \mathrm{~km}^{2}$,
A_{2} and A_{3} are $1 \mathrm{~km}^{2}$.

An example

$A_{\text {total }}=4 \mathrm{~km}^{2}$

$$
\begin{gathered}
p_{1}=\frac{1}{2} \cdot \frac{1}{2}=\left(\frac{A_{1}}{A_{\text {total }}}\right)^{2} \\
p_{2}=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}=p_{3} \\
p=p_{1}+p_{2}+p_{3}=\frac{3}{8}=0.375 \\
m_{\text {eff }}=A_{\text {total }} * p=\frac{\sum_{i=1}^{n} A_{i}^{2}}{A_{\text {total }}}=1.5 \mathrm{~km}^{2}
\end{gathered}
$$

The formula of the effective mesh size:

$$
\begin{aligned}
m_{\text {eff }} & =\frac{1}{A_{\text {total }}}\left(A_{1}^{2}+A_{2}^{2}+\ldots+A_{i}^{2}+\ldots+A_{n}^{2}\right) \\
& =\frac{1}{A_{\text {total }}} \sum_{i=1}^{n} A_{i}^{2}
\end{aligned}
$$

Implications

- If the landscape becomes more fragmented \rightarrow encountering probability p is lower \& effective mesh size is lower
- Fragmenting large patches has a big effect on the effective mesh size
- Fragmenting small patches also has an effect on the effective mesh size, but the effect is less strong
- $m_{\text {eff }}$ corresponds to
- the definition of landscape connectivity as „the degree to which a landscape facilitates of impedes animal movement" (Taylor et al. 1993)
- and to the suggestion by Taylor et al. (1993) to measure landscape connectivity "for a given organism using the probability of movement between all points or resource patches in a landscape".

Effective mesh density: $s_{\text {eff }}=1 / m_{\text {eff }}$

Hypothetical example where the trend is constant.
Linear increase in the eff. mesh density corresponds to a $1 / x^{-c}$-curve in eff. mesh size.

Effective mesh density: $s_{\text {eff }}=1 / m_{\text {eff }}$

Landscape connectivity = „the degree to which a landscape facilitates of impedes animal movement" (Taylor et al. 1993)

Landscape fragmentation

Canton Aargau 1885 and 2002 (FG 4)

Canton Aargau

Results 1935-2002 are used in „Swiss Environmental Statistics - Brief Guide 2006"

(1) Landicape frapmertation

 eaghty

 flo burat inl th

Swiss Federal Statistical Office (2007)

10 Landscape and spatial development

Each second the total buathup area in Switzeriand is increased by 0.9 mr , mainly at the
expense of aggicuttural land
The extent fo wlich the landscape is bieng fragenented has risen by 88% over the past
70 years.
In 2005 nearly 23% of the total surface area of Smbtzerland was protected.

Switzerland is a country rich in natural and rural landscapes, which play an important role in maintaining the standard of living and are a major resource for tourism.
The intensive use of the land exerts considerable pressure on the landscape, however. It is often rural areas that pay the price of the increasing expansion of built-up areas and of transport infrastructure. At the same time, the tendency to fragment the landscape more and more prevents wild animals from moving freely in their natural habitats. Such freedom of movement is an important prerequisite for reproduction and thus for maintaining the species, however (cf. Section 15).
It is therefore crucial that the landscape be developed with care and that, where necessary. it is protected.

Landscape fragmentation below 2100 m altitude (terrestrial surface) Effective mesh density $\mathrm{Sem}_{\mathrm{e}}$

Ald to understanding: The effective mesh densty sme (i, e. the effective mumber of meshes ps $1000 \mathrm{~km}^{2}$) indicates the probabilty of two randomly chosen points within an area being divided by barriers (e.g. a foad or a bultup area). The higher the san the greater the degree of landscape fragnentation.

Source: Jaeger, 1., Bertiler, R., Sctwack, C. (2007): Degree of Landscape Fragmentation in Switzerland - Quantitative analysis 1885-2002 and imbilcations for tratfic plaming and regional planning, condensed version. Federal Statistical Office

Also used in LABES:
Monitoring of
landscape quality in Switzerland

Kienast et al.
(2015)

2. Landscape Fragmentation in Europe

3 immediate priorities:

- Immediate protection of large unfragmented areas and wildlife corridors
- Monitoring of landscape fragmentation
- Application of fragmentation analysis as a tool in transportation planning and regional planning

Online: www.eea.europa.eu/publications/landscape-fragmentation-in-europe

Environ Monit Assess (2014) 186:2505 2534

DOI 10.1007/s10661-013-3557-9

Monitoring an ecosystem at risk: What is the degree of grassland fragmentation in the Canadian Prairies?

Laura Roch - Jochen A. G. Jaeger

Received: 18 June 2013/Accepted: 19 November 2013/Published online: 4 January 2014
 C Springer Science+Business Media Dordrecht 201

Abstract Increasing fragmentation of grassland habiats by human activities is a major threat to biodiversity nd landscape quality. Monitoring their degree of fragmentation has been identified as an urgent need. This study quantifies for the first time the current degree of grassland fragmentation in the Canadian Prairies using our fragmentation geometries (FGs) of increasing spec ificity (i.e. more restrictive grassland classification) and five types of reporting units (7 ecoregions, 50 censu divisions, 1,166 municipalities, 17 sub-basins, and 108 watersheds). We evaluated the suitability of 11 datasets based on 8 suitability criteria and applied the effective mesh size ($m_{\text {eff }}$) method to quantify fragmentation. We recommend the combination of the Crop Inventory Mapping of the Prairies and the CanVec datasets as the most suitable for monitoring grassland fragmentation The grassland area remaining amounts to $87,570.45 \mathrm{~km}^{2}$ in FG4 (strict grassland definition) and $183,242.042 \mathrm{~km}^{2}$ in FGl (broad grassland definition), out of $461,503.97 \mathrm{~km}^{2}$ (entire Prairie Ecozone area). The very low values of $m_{\text {eff }}$ of $14.23 \mathrm{~km}^{2}$ in FG4 and $5.44 \mathrm{~km}^{2}$ in FG1 indicate an extremely high level o grassland fragmentation. The $m_{\text {eff }}$ method is supported
in this study as highly suitable and recommended for ong-term monitoring of grasslands in the Canadia rairies, it can help set measurable targets and/or limit or regions to guide management efforts and as a tool for erformance review of protection efforts, for increasing wareness, and for guiding efforts to minimize grasslan ragmentation. This approach can also be applied in other parts of the world and to other ecosystems.

Keywords Effective mesh size • Ecological indicators
Grassland conservation - Landscape fragmentation Fragmentation per se \cdot Protected areas • Prairie ecozone Roads - Urban sprawl

Abbreviations use

CBI	City Biodiversity Index
FG	Fragmentation geometry
CESI	Canadian Environmental Sustainability Indicators
	Federal Sustainable Development
FSDS	Strategy Effective mesh size
$m_{\text {eff }}$	latan

Strategy
Effective mesh size
Effective mesh density

5. California

Fragmentation Geometry	Elements Included
1	Highways, major roads, railroads, urbanized areas
2	+ minor roads
3	+ agricultural fields
4	+ lakes, major rivers, high elevations

6. Use of $m_{\text {eff }}$ in the City biodiversity Index (CBI)

Research Questions

1. What is the current level connectivity in the network?
2. What is the potential future level of connectivity in the network?
3. What is Meadowbrook's contribution to connectivity?

Deslauriers et al. (2018)

Conclusions

- With Meadowbrook developed, we would loose Meadowbrook's significant contribution to connectivity for wildlife (and people)
- and in particular it's large potential for increased connectivity in the area in the future

Conclusions

- Some important points need particular attention
- Landscape connectivity or habitat connectivity, within-patch connectivity and between-patch connectivity, influence of changes in habitat amount,
- Examples $\left(m_{\text {eff }}\right)$
- Switzerland, Europe, Ontario, Canadian prairies, California, City Biodiversity Index
- $m_{\text {eff }}$ is easy to use \& can be applied in various ways - Monitoring
- environmental, biodiversity, landscape quality,
- compare between-patch connectivity and within-patch connectivity
- Comparison of scenarios
- Setting of targets and limits

Measuring Forest Connectivity in Nova Scotia:
Comparing a variety of methods to gain perspective

Caitlin Cunningham, PhD Student Dalhousie University

Acknowledgements

- Peter Bush Nova Scotia Department of Lands and Forestry
- John Brazner Nova Scotia Environment
- Karen Beazley Dalhousie University

NEG-ECP Resolution 40-3

"Maintaining and restoring ecological connectivity is an important strategy for boosting the resilience of the region's native ecosystems and biodiversity, as well as its economy and human communities. Connected habitats provide the natural pathways necessary for fish, wildlife, and plants to move to meet their life needs and to find suitable habitat as climate conditions change. Intact ecosystems also provide sustainable economic and social benefits on which the region's well-being depends - including renewable forest products, outdoor recreation and tourism, clean air and water, flood attenuation, carbon sequestration, and our sense of place"

- Evaluate forest connectivity across Nova Scotia

Research Goals

- Compare different metrics for connectivity
- Identify places where connectivity is restricted

Mesh Size

- Measure Isolation of Segments of Habitats and Ecosystems
- Probability that 2 points will be in Connected Patches
- $m_{e f f}=\frac{1}{A_{\text {total }}}\left(A_{1}^{2}+A_{2}^{2}+\cdots+A_{n}^{2}\right)$

Circuitscape

- Resistance, Voltage, Current
- Identifying Barriers and Probability of Animal Movement

Fragstats

- Calculating Landscape Metrics
- Mean Patch Size, Edge Density, Diversity Indices
- Compare to Home Ranges

Multiple

 Definitions of- Forest: Any Treed Ecosystem

Forest

- Mature Forest: Natural Stands over 40 years of age
- Natural Landscape: Any non-anthropogenic land class

Mature
 Forest

Influence of Roads on Connectivity

- Major source of fragmentation
- Detrimental effects on wildlife movement

Road Effect Zone

Area affected by roads

Variety of factors considered inclúding roadkill, dust, road salt and wildlife avojdance

All Forest

Mature
 Forest

Questions? Feedback?

caitlin.cunningham@dal.ca

HALIFAX GREEN NETWORK PLAN

NOVASCOTIA

- Forestry \& Mining
- Crown lands
- 100 series Hwys. \& pre '96 rural roads
- Endangered species
- Environmental regulations

HALIFAX

- Land use planning
- Buildings and structures
- Roads, AT, Transit
- Central Services
- Storm Water Management
- Municipal Parks

HGNP PROCESS

PHASE 1| FOUNDATIONS PHASE 2| PLAN DIRECTIONS PHASE 3| FINAL PLAN
 Trends \& Best Practice Analysis
 Public Engagement
 Landscape Values Mapping
 State of the Landscape Report
 Cultural Landscape Framework Study
 Public Engagement
 Create Green Network Maps
 Green Network Plan - Primer
 Document
 Public Engagement
 Develop Final Plan
 Stakeholder Consultation
 Finalize Plan
 CPED/Regional Council

Method \& Evidence

- Open space values \& issues
- Data collection \& analysis
- 75 + data elements
- Interacting set of maps
- High value areas
- Scenarios \& Impacts
- Development impacts
- Social and cultural impacts
- Economic impacts

- preferred network scenario

-(4) Ecossisin + boovessiv

Areas of Important Biodiversity Salmon Habitat (100m Buffer)
Barrens
Endangered Moose Habitat
Essential Connectivity Regions
Forest Mature 100 Years or More
Generalized Connectivity
Important Bird Areas
Large Patches 1000 to 5000 Ha
Large Patches 5000 or more Ha
Large Patches 500 to 1000 Ha
Protected Water
Rare Forest
Riparian Buffers

Seawater Intrusion Areas
Significant Habitat
Surficial Aquifers
Surficial Geology
Tertiary Watersheds
Watershed Anthropogenic Cover
Water Table Depth upto2meters
Wells Buffered
Wetland Patch Complex Wildlife
Species of Concern Observations

RESEARCH \& ANALYSIS

Halifax Green Network Plan

Halifax Green Network Plan

THEMES

ECOLOGY

Goal: Support a healthy and sustainable natural ecosystem.

LEGEND
A Airports

- Roads
..... Planned Roads
Lakes

OVERLAPPING VALUE

\leftrightarrow Essential Corridor

KEY HIGHLIGHTS

- adopt the HGNP Ecology Map (Map 5) in the Regional Plan;
- consolidate and apply environmental protection zones to large wetland complexes and vulnerable land forms;
- refine and strengthen existing variable watercourse buffering requirements;
- support naturalized approaches to storm water management; and
- request an amendment to the HRM Charter to enable the Municipality to acquire environmental reserves through the subdivision and development process, in addition to parkland dedication requirements.

KEY HIGHLIGHTS

- provide greater as-of-right (streamlined permitting process) opportunities for primary resource industries;
- limit or prohibit conservation design developments (residential development) in the Regional Plan's Agricultural Designation; and
- relax restrictions on tourism related home-based businesses in rural areas
- consider large scale rural based tourism proposals through discretionary planning process (Council decision, public consultation)

COMMUNITY

SHAPING

Goal: Use the Green Network to guide the
growth and development of communities.

KEY HIGHLIHGTS

- consider the Green Network when reviewing and considering changes to urban boundaries;
- prioritize the development of brownfield and infill sites over greenfield development areas;
- prioritize the preservation and creation of natural connections to the Chebucto Peninsula; and
- Direct rural development to clearly defined rural centres, while carefully controlling the scale and design of residential development in areas located between these centres.

OUTDOOR

Goal: Manage a municipal park network that meets the outdoor recreation needs of residents and visitors, supports ecological and cultural conservation, and shapes community form and identity.

KEY HIGHLIGHTS

- promote the importance of parks for community health and well-being;
- evaluate service delivery gaps and overlap;
- use the land capability tool, included in the HGNP, to evaluate existing and proposed parks;
- establish an Open Space Network in cooperation with provincial and federal governments and conservation groups;
- continue to place emphasis on establishing the Regional Parks identified in the Regional Plan, while recognizing new nature parks and open space areas; and
- request an amendment to the HRM Charter to enable the Municipality to establish parkland dedication requirements based on density.

Goal: Identify, preserve and celebrate cultural landscapes and their value in connecting people to the land and telling their stories.

KEY HIGHLIGHTS

- develop a cultural landscape program;
- clarify the scope and role of cultural landscapes studies as part of master planning exercises; and
- proactively engage underrepresented groups to identify valued cultural landscapes.

MONITORING

- Regional Plan Key Performance Indicators
- Develop partnerships with federal and provincial departments, universities and non-profit groups
- Wildlife movements \& biodiversity
- Water quality \& quality
- Green cover

IMPLEMENTATION

- 79 actions
- Four types of implementation tools
- Land Use Planning
- Park Network Management
-Current and Future Project Work
-Partnerships
- Immediate and on-going guidance to activities and decisions
- Short (1-2 year), medium (2-4 year) or long (4-7 year) timeframes

HALIFAX GREEN NETWORK PLAN

Questions?

Integrating Wildlife Connectivity with Municipal Land Use Planning in Cumberland, NS

April 25, 2019
Canadian Maritimes Ecological Connectivity Forum

CHAPTER 18 OF THE ACTS OF 1998 An Act Respecting Múnicipal Government

The Municipal Government Act ("MGA")

Municipal Planning Strategy ("MPS")

- Overarching vision for the community
- Statement of values
- Policies for land use and development
- Procedures and considerations for changing the plan
- Considerations for discretionary proposals

Land Use By-law ("LUB")

- Regulations for implementing the MPS
- Zoning
- Procedures for issuing permits
- Controls USES and FORM

Kilometres
Advocate Harboury

Challenges

Direct Approach

"[..]
Council recognizes the important role that
Cumberland's landscapes play in supporting Nova Scotia's wildlife populations, and wishes to support the work of the Nature Conservancy and other organizations working to preserve the lands most valuable to conservation efforts. Council encourages the formal designation of wildlife connectivity corridors. Council has also elected to-as part of making a decision on planning applications-consider whether a proposed development would have an inappropriate impact on wildlife connectivity."

Cumberland County	\square	Sensitive Environments
Towns + FN Reserves		Core Wilderness
1) $1: 500,000$	Last Updated: 2018.03.18	
0	5	10

Policy 4-47: Council shall on Schedule B, the Sensitive Environments Map, identify lands that have a high probability of being wildlife corridors.
The planning review criteria of Chapter 6 shall include consideration for the impact of planning proposals on these corridor lands.

Indirect Approach

Schedule A:

Land Use Zoning Map

Cumberland

Thank You!

ian@uplandstudio.ca 902.423.0649

Maine's Habitat Outreach Program: Providing Technical Assistance at Multiple Scales

Amanda Shearin, Habitat Outreach Coordinator/Wildlife Planner Maine Department of Inland Fisheries and Wildlife

A Maine Crash Course

94\% privately owned

- 61\% corporate
- 33\% family forests

Major Habitat Types

From Element 2, 2015-2025 Maine Wildlife Action Plan

Biodiversity and Development

The landscape is changing the most where the highest biodiversity is

Conserved Lands*

* Conserved means fee lands and easements

Disproportionate Distribution

Schlawin and Cutko 2014

Disproportionate Habitats

Example Habitat	\% of State	\% Conserved
Northern Conifer	39.9%	17.1%
Boreal Upland Forest	29.8%	26.0%
Emergent Marsh	1.9%	52.2%
Alpine	0.02%	99.1%

A Note on Planning

Organized Towns

Unorganized Towns

Maine: A Home Rule State

- 492 organized towns
- Independent growth and development visions
- Most land use decisions made by volunteer boards and Code Enforcement Officers
- Local development often does not trigger resource agency involvement

Diverse Community Visions

Balancing Growth with Conservation

Maine's Growth Management Act (1988)

- Instructs municipalities to create Comprehensive Plans
- Critical natural resources
- Rare species and habitats
- Wetlands
- Drinking water
- Recreation
- Transportation
- Future land use plan
- Updated every 12 years
- Criteria last updated in 2011
- Are we due for an update?

A Public Resource for Nearly Two Decades: Beginning with Habitat (BwH)

Beginning with Habitat

Conserving Maine's Natural Landscape for Plants, Animals, and People

Beginning with Habitat is...

A voluntary landscape-based approach to achieve meaningful conservation of all native species on a developing landscape.

Purpose:

To provide the most up-to-date wildlife and plant habitat information available for use in Comprehensive, Open Space, and Conservation Planning.

A Consistent, Transparent Partnership

- Multiple stakeholders
- One-stop shopping
- Best, most-updated available science
- Continually evolving
- Efficient
- 2018: 200 data packages
- 116 unique towns

Hith MaineDOT

Maine Const Heritage Trust

TheNature Conservancy
 Protecting nature. Preserving life.

Local Connectivity Planning

Terrestrial Crossings

$\Leftrightarrow>2000$ vehicles day ${ }^{-1}$
<2000 vehicles day ${ }^{-1}$

Riparian Crossings

$\Leftrightarrow>2000$ vehicles day ${ }^{-1}$
$\Leftrightarrow<2000$ vehicles day ${ }^{-1}$

Statewide Priorities

2012: Political Uncertainty

Recent updates to IFW's Beginning with Habitat

Abstract

At MFPC members recent "roundtable" with Gov. Paul LePage, John Gray raised some concerns about the Beginning with Habitat program at the Maine Department of Inland Fisheries and Wildlife. IFW Commissioner Chandler Woodcock told him that a number of changes have been made to the program to address concerns from landowners. The commissioner sent the information below to explain the changes. After reading the information below. Gray said, "The best / can say is that it is a step in the right direction."

Beginning with Habitat (BwH) is a voluntary tool intended to assist landowners, resource managers, planners, and municipalities in identifying and making informed decisions about areas of potential natural resource concem to them. Department staff has conducted hundreds of presentations, and distributed hundreds of data packages. To date the

Greater Consideration of Local Priorities

Regional Coordination and Diverse Landowners

New Information and Challenges

Grasshopper Sparrow (Ammodramus savannarum)
Town Conservation Range Map
Maine State Wildlife Action Plan
Feb 3, 2015

Shading represents the relative extent of the confirmed presence (field observations) or of the estimated presence (potential habitat) within each Town.

Portland Press Herald
II. Endangered/Threatened/Special Concern

Evolution: The Habitat Outreach Program

MAINE'S WILDLIFE ACTION PLAN

Prepared by
Maine Department of Inland Fisheries Wildlife

Maine's Conservation Partners
September 2015

Beginning with HABITAT

2016 on....

Cultivating State Partnerships

- Municipalities
- Needs assessment
- Climate change
- Connectivity
- Transportation planning
- Land trust and conservation commission engagement
- Interagency partnerships
- Climate change
- Transportation planning
- Landowner engagement

MaineDOT

New Ways to View Local Information

New Regional Models

Greater Online Accessibility to Data

Map Viewers

Map 1- Riparian Habitats

Beginning with Habitat Map 1 depicts major surface water features and drainage areas, associated shoreline habitats and riparian zones, and aquifers and wells that supply public drinking water.

Map 2- Plant and Animal Habitats
Beginning with Habitat Map 2 depicts known rare, threatened, or endangered plant and animal occurrences, as well as "Significant Wildlife Habitat," "Essential Wildlife Habitat," and other important wild life habitats.

Open Viewer
http://webapps2.cgis-solutions.com/beginningwithhabitat/

Welcome Layers Legend

Beginning with HABITAT

High Value Plant and Animal Habitats This map viewer is an on-line adsptation of the Beginning with Habitat Msp 2. It depidst known rare, threatened, or endangered plant and anims occurrences, as well ss "Significant Wildife Habitat," "Essential wildlife Habitat," and other important wildife habitats. Maps generated with this tool should be used only as preliminary planning references to identify and illustrate locations of mapped occurrences and habitats. Habitat data sets are updated continuously as more accurate and current data becomes available. However, as many areas have not been completely surveyed, features may be present that are not yet mapped, and the boundaries of some depicted features may need to be revised. Local knowledg is critical in providing accurate data. If errors are noted in the current depiction of resources; please contact our office: www. BeginningWithHabitat.org Data Components

- State Listed Animals (ETSC). Wildlife species whose conservation status is listed as Endangered. Threatened, or of Special Concern. Data is based on recent observations and is presented with a generalized buffer, - Rare Plants. Known rare, threatened, or endangered plant occurrences based on field observations by Maine Natural Areas Program (MNAP) staff.
- Exemplary Natural Communities. The MNAP has classified and distinguished 98 different natural community types that collectively cover the state's landscape. Mapped rare natura communities or ecosystems, or exemplary examples of common natural communities of ecosystems, are based on field surveys and

Cultivating Regional Partnerships

- Staying Connected Initiative
- NEG-ECP Resolution 40-3 Workgroup
- Northeast Wildlife Action Plan Coordinators

New Ways to Track Progress

The Maine SWAP CAT

Mainewildlifeactionplan.com

Challenges and Opportunities Remain

Beginning with HABITAT
 home about bwh community involvement the maps toolbox map viewer olbe newsletters faq

About Beginning with Habitat

Beginning with Habitat (BwH), a collaborative program of federal, state and local agencies and nongovernmental organizations, is a habitat-based approach to conserving wildlife and plant habitat on a landscape scale. The goal of the program is to maintain sufficient habitat to support all native plant and animal species currently breeding in Maine. BwH compiles habitat information from multiple sources, integrates it into one package, and makes it accessible to towns, land trusts, conservation organizations and others to use proactively. Each Maine town is provided with a collection of maps, accompanying information depicting and describing various habitats of statewide and national significance found in the town, and with tools to implement habitat conservation in local land use planning efforts. BwH is designed to help local decision makers create a vision for their community, to design a landscape, and to develop a plan that provides habitat for all species and balances future development with conservation.

Since its inception in 2000, BwH has met with and provided information to more than 140 cities and towns and 35 land trusts and regional planning commissions within the state. Many towns and land trusts have incorporated the information they have received from BwH into their comprehensive plans an

Program Overview

The Beginning with Habitat (BwH) landscape approach to habitat conservation was initially developed by Research Unit (CFWRU) under the direction of the Department of Inland Fisheries and Wildlife (MDIFW) (communities, and wildlife habitats of national interest were later added by the Maine Natural Areas Progr (USFWS).

By overlaying maps of the habitat needs of all of Maine's vertebrate species with Maine's primary land co information system (GIS), the CFWRU reports that $80-95 \%$ of all of Maine's terrestrial vertebrate species

Resilient and
 Connected Landscapes
 for Terrestrial Conservation

R-Nume

RESIUENT LANDS

CONSERVATION STRATEGIES

Lessons Learned: Connecting People and Nature

Connectivity Means Many Things

- Multiple scales and definitions
- Other messages
- Public safety
- Infrastructure
- Economy
- Healthy communities
- Hunting
- Fishing
- Recreation
- Identify
- Serenity

Embracing an Expanded Model

Thank You

Amanda Shearin Habitat Outreach Coordinator Maine Dept. of Inland Fisheries and Wildlife 284 State Street
41 State House Station
Augusta, ME 04333
207-287-5260
amanda.f.shearin@maine.gov www.beginningwithhabitat.org

Many thanks to: BwH Partners and Steering Committee Members, Maine's Wildlife Action Plan Partners and Steering Committee Members, and BwH staff (Bethany Atkins, Bill Hancock, John Maclaine, Steve Walker)

